Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 84
1.
Eur J Pharmacol ; 963: 176264, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38123006

AIMS: Ischemic stroke is a severe cerebrovascular disease in which neuronal death continually occurs through multiple forms, including apoptosis, autophagy, pyroptosis and ferroptosis. Quercetin (QRC), as a natural flavonoid compound, has been reported to have pharmacological effects on ischemic injury accompanied by unclear anti-ferroptotic mechanisms. This study is designed to investigate the therapeutic effects of QRC against ferroptosis in ischemic stroke. MATERIALS AND METHODS: In vivo, the model of MCAO rats were used to assess the protective effect of QRC on cerebral ischemic. Additionally, we constructed oxidative stressed and ferroptotic cell models to explore the effects and mechanisms of QRC on ferroptosis. The related proteins were analysed by western blotting, immunohistochemical and immunofluorescence techniques. RESULTS: The experiments demonstrated that QRC improves neurological deficits, infarct volume, and pathological features in MCAO rats, also increased the viability of HT-22 cells exposed to H2O2 and erastin. These results, including MDA, SOD, GSH, ROS levels and iron accumulation, indicated that QRC suppresses the generation of lipid peroxides and may involve in the regulatory of ferroptosis. Both in vitro and in vivo, QRC was found to inhibit ferroptosis by up-regulating GPX4 and FTH1, as well as down-regulating ACSL4. Furthermore, we observed that QRC enhances the nuclear translocation of Nrf2 and activates the downstream antioxidative proteins. Importantly, the effect of QRC on ferroptosis can be reversed by the Nrf2 inhibitor ML385. CONCLUSIONS: This study provides evidence that QRC has a neuroprotective effect by inhibiting ferroptosis, demonstrating the therapeutic potential for cerebral ischemic stroke.


Brain Injuries , Ferroptosis , Ischemic Stroke , Quercetin , Stroke , Animals , Rats , Ferroptosis/drug effects , Hydrogen Peroxide , NF-E2-Related Factor 2 , Quercetin/pharmacology , Quercetin/therapeutic use , Signal Transduction , Stroke/drug therapy , Heme Oxygenase (Decyclizing)/drug effects , Heme Oxygenase (Decyclizing)/metabolism
2.
Mol Neurobiol ; 2023 Nov 24.
Article En | MEDLINE | ID: mdl-37996729

Inflammatory reaction plays a key role in the pathogenesis of hypoxic-ischemic encephalopathy (HIE) in neonates. Microglia are resident innate immune cells in the central nervous system and are profoundly involved in neuroinflammation. Studies have revealed that atorvastatin exerts a neuroprotective effect by regulating neuroinflammation in adult animal models of brain stroke and traumatic brain injury, but its role regarding damage to the developing brain remains unclear. This study aimed to clarify the effect and mechanism of atorvastatin on the regulation of microglia function in neonatal hypoxic-ischemic brain damage (HIBD). The oxygen glucose deprivation (OGD) of microglia and neonatal rat HIBD model was established. Atorvastatin, recombinant sclerostin protein (SOST), and XAV939 (degradation of ß-catenin) were administered to OGD microglia and HIBD rats. The pathological changes of brain tissue, cerebral infarction volume, learning and memory ability of rats, pro-inflammatory (CD16+/Iba1+) and anti-inflammatory (CD206+/Iba1+) microglia markers, inflammation-related indicators (Inos, Tnfα, Il6, Arg1, Tgfb, and Mrc1), and Wnt/ß-catenin signaling molecules were examined. Atorvastatin reduced OGD-induced pro-inflammatory microglia and pro-inflammatory factors, while increasing anti-inflammatory microglia and anti-inflammatory factors. In vivo, atorvastatin attenuated hypoxia-ischemia (HI)-induced neuroinflammation and brain damage. Mechanistically, atorvastatin decreased SOST expression and activated the Wnt/ß-catenin signaling pathway, and the administration of recombinant SOST protein or XAV939 inhibited Wnt/ß-catenin signaling and attenuated the anti-inflammatory effect of atorvastatin. Atorvastatin promotes the pro/anti-inflammatory phenotypic transformation of microglia via the Wnt/ß-catenin pathway in HI neonatal rats. Atorvastatin may be developed as a potent agent for the treatment of HIE in neonates.

3.
Hum Genomics ; 17(1): 78, 2023 08 25.
Article En | MEDLINE | ID: mdl-37626401

BACKGROUND: The RNA m6A modification has been implicated in multiple neurological diseases as well as macrophage activation. However, whether it regulates microglial activation during hypoxic-ischemic brain damage (HIBD) in neonates remains unknown. Here, we aim to examine whether the m6A modification is involved in modulating microglial activation during HIBD. We employed an oxygen and glucose deprivation microglial model for in vitro studies and a neonatal mouse model of HIBD. The brain tissue was subjected to RNA-seq to screen for significant changes in the mRNA m6A regulator. Thereafter, we performed validation and bioinformatics analysis of the major m6A regulators. RESULTS: RNA-seq analysis revealed that, among 141 m6A regulators, 31 exhibited significant differential expression (FC (abs) ≥ 2) in HIBD mice. We then subjected the major m6A regulators Mettl3, Mettl14, Fto, Alkbh5, Ythdf1, and Ythdf2 to further validation, and the results showed that all were significantly downregulated in vitro and in vivo. GO analysis reveals that regulators are mainly involved in the regulation of cellular and metabolic processes. The KEGG results indicate the involvement of the signal transduction pathway. CONCLUSIONS: Our findings demonstrate that m6A modification of mRNA plays a crucial role in the regulation of microglial activation in HIBD, with m6A-associated regulators acting as key modulators of microglial activation.


Macrophage Activation , Microglia , Animals , Mice , Animals, Newborn , Brain , RNA, Messenger/genetics
4.
Mater Horiz ; 10(10): 4510-4520, 2023 Oct 02.
Article En | MEDLINE | ID: mdl-37552531

Flexible pressure sensors with high sensitivity are required in fields such as human-machine interactions, electronic skin, and health tracking. In this work, we reported cellulose ion-conductive hydrogel (ICH) rationally designed from both nano and micron perspectives for ultrasensitive pressure sensors, via a zero-waste approach, without involving soft components. By introducing low molecular weight cellulose and using the idea of a rough surface, the piezocapacitive sensitivity of the ICH was increased from 0.04 kPa-1 to 89.81 kPa-1 in increments of 2245, which also has a high degree of transparency, excellent durability, and good electrical transmission. Moreover, the ICH demonstrated great potential as sensors and arrays practicable in various industries, including medical treatment and motion recognition. The design is also applicable for piezoresistive tactile sensors, which realize enhanced sensitivity. This affordable, effective, and environmentally friendly technology definitely offers novel perspectives and the potential to enhance the functionality of flexible pressure sensors.

5.
Chemosphere ; 337: 139280, 2023 Oct.
Article En | MEDLINE | ID: mdl-37385482

The use of biodegradable plastic film mulching as a replacement for polyethylene plastic film has gained recognition due to its reduced environmental pollution. However, its impact on soil environment is not yet fully understood. Here, we compared the effects of different plastic film mulching on the accumulation of microbial necromass carbon (C) and its contribution to soil total C in 2020 and 2021. Results showed that biodegradable plastic film mulching decreased the accumulation of fungal necromass C compared to no plastic film mulching and polyethylene film mulching. However, the bacterial necromass C and soil total C were not affected by the plastic film mulching. Biodegradable plastic film mulching decreased the soil dissolved organic carbon content after maize harvest. Random forest models suggested that soil dissolved organic C, soil pH and the ratio of soil dissolved organic C to microbial biomass C were important factors in regulating the accumulation of fungal necromass C. The abundance of the fungal genus Mortierella was also found to have a significant positive contribution to the accumulation of fungal necromass C. These findings suggest that biodegradable plastic film mulching may decrease the accumulation of fungal necromass C by changing substrate availability, soil pH, and fungal community composition, with potential implications for soil C storage.


Biodegradable Plastics , Soil , Soil/chemistry , Agriculture/methods , Water/analysis , Polyethylenes , Plastics , China
6.
J Ethnopharmacol ; 315: 116567, 2023 Oct 28.
Article En | MEDLINE | ID: mdl-37172921

ETHNOPHARMACOLOGICAL RELEVANCE: Paeoniae Radix Rubra (PRR), the root of Paeonia lactiflora Pall. or Paeonia veitchii Lynch, has been widely used to promote blood circulation and eliminate blood stasis in Chinese clinical practice, but its effect on cerebral ischemia is still rarely reported. AIM OF THE STUDY: The present study aimed to assess the potential therapeutic possibilities of the extract of PRR (PRRE) on cerebral ischemia, further exploring the underlying mechanism, and preliminary screening of the corresponding active components. MATERIALS AND METHODS: The neuroprotective effects of PRRE in Sprague-Dawley (SD) rats with middle cerebral artery occlusion (MCAO) injury and mouse hippocampal neuronal cells (HT22 cell line) following oxidative stress were confirmed. The mechanism was investigated using immunohistochemical staining, western blotting, transmission electron microscopy (TEM), and immunofluorescence. The active components of PRRE were analysed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and molecular docking. RESULTS: The in vivo study showed that PRRE reduced infarct volume and improved neurological deficits in rats, and the expression of GPX4, FTH1, Beclin1, LC3 II, and p-Akt was upregulated in the rat hippocampi. In addition, the vitro research indicated that PRRE can also alleviate H2O2-induced HT22 cell damage by regulating cytokines such as malondialdehyde (MDA), reduced glutathione (GSH) and reactive oxygen species (ROS), and the expressions of GPX4 and Beclin1 were observed to be elevated. The PI3K/Akt signalling pathway was inhibited by LY294002, an inhibitor of phosphoinositide 3-kinase (PI3K). Furthermore, the effective components of PRRE in regulating ferroptosis and autophagy are mainly defined as albiflorin, paeoniflorin, benzoyl paeoniflorin, oleanolic acid, and hederagenin. CONCLUSION: PRRE exerts neuroprotective effects against cerebral ischaemic injury by inhibiting ferroptosis and activating autophagy through the PI3K/Akt signalling pathway. This study provides an experimental basis for the potential application of PRRE as a novel therapeutic drug, and PI3K/Akt-associated ferroptosis and autophagy as therapeutic targets for cerebral ischemia.


Brain Ischemia , Ferroptosis , Neuroprotective Agents , Reperfusion Injury , Rats , Mice , Animals , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Chromatography, Liquid , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Beclin-1 , Molecular Docking Simulation , Hydrogen Peroxide/pharmacology , Tandem Mass Spectrometry , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Autophagy , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism
8.
Int J Mol Med ; 51(2)2023 Feb.
Article En | MEDLINE | ID: mdl-36524372

Activin A (Act A) has been reported to promote oligodendrocyte progenitor cell (OPC) differentiation in vitro and improve neurological outcomes in adult mice. However, the roles and mechanisms of action of Act A in preterm brain injury are unknown. In the present study, P5 rats were subjected to hypoxia­ischemia to establish a neonatal white matter injury (WMI) model and Act A was injected via the lateral ventricle. Pathological characteristics, OPC differentiation, myelination, and neurological performance were analyzed. Further, the involvement of the Noggin/BMP4/Id2 signaling pathway in the roles of Act A in WMI was explored. Act A attenuated pathological damage, promoted OPC differentiation, enhanced myelin sheath and myelinated axon formation, and improved neurological performance of WMI rats. Moreover, Act A enhanced noggin expression, which, in turn, inhibited the expression of bone morphogenetic protein 4 (BMP4) and inhibitor of DNA binding 2 (Id2). Furthermore, upregulation of Id2 completely abolished the rescue effects of Act A in WMI rats. In conclusion, the present findings suggested that Act A rescues preterm brain injury via targeting a novel Noggin/BMP4/Id2 signaling pathway.


Activins , Brain Injuries , Animals , Mice , Rats , Activins/pharmacology , Activins/therapeutic use , Bone Morphogenetic Protein 4/drug effects , Bone Morphogenetic Protein 4/metabolism , Brain Injuries/drug therapy , Brain Injuries/metabolism , Signal Transduction/physiology , Inhibitor of Differentiation Protein 2/drug effects , Inhibitor of Differentiation Protein 2/metabolism
9.
Polymers (Basel) ; 14(24)2022 Dec 07.
Article En | MEDLINE | ID: mdl-36559707

Polycaprolactone (PCL) is one of the promising linear aliphatic polyesters which can be used as mulching film. Although it has suitable glass transition temperature and good biodegradability, further practical applications are restricted by the limited temperature-increasing and moisturizing properties. The rational design of the PCL structure is a good strategy to enhance the related properties. In this study, thermally-induced phase separation (TIPS) was introduced to fabricate a PCL nanoporous thin film. The introduction of a nanoporous structure on the PCL surface (np-PCL) exhibited enhanced temperature-increasing and moisturizing properties when used as mulch film. In detail, the average soil temperature of np-PCL was increased to 17.81 °C, when compared with common PCL of 17.42 °C and PBAT of 17.50 °C, and approaches to PE of 18.02 °C. In terms of water vapor transmission rate, the value for np-PCL is 637 gm-2day-1, which was much less than the common PCL of 786 and PBAT of 890 gm-2day-1. As a result, the weed biomass under the np-PCL was suppressed to be 0.35 kg m-2, almost half of the common PCL and PBAT. In addition, the np-PCL shows good thermal stability with an onset decomposition temperature of 295 °C. The degradation mechanism and rate of the np-PCL in different pH environments were also studied to explore the influence of nanoporous structure. This work highlights the importance of the nanoporous structure in PCL to enhance the temperature-increasing and moisturizing properties of PCL-based biodegradable mulching film.

10.
Cell Death Dis ; 13(11): 929, 2022 11 05.
Article En | MEDLINE | ID: mdl-36335088

Heat shock protein (HSP) 90, an important component of the molecular chaperone network, is closely concerned with cellular signaling pathways and stress response by participating in the process of maturation and activation of client proteins, playing a crucial role both in the normal and abnormal operation of the organism. In functionally defective tissues, programmed cell death (PCD) is one of the regulable fundamental mechanisms mediated by HSP90, including apoptosis, autophagy, necroptosis, ferroptosis, and others. Here, we show the complex relationship between HSP90 and different types of PCD in various diseases, and discuss the possibility of HSP90 as the common regulatory nodal in multiple PCD, which would provide a new perspective for the therapeutic approaches in disease.


Apoptosis , HSP90 Heat-Shock Proteins , Humans , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Apoptosis/physiology , Molecular Chaperones , Autophagy/genetics
11.
Front Pharmacol ; 13: 963179, 2022.
Article En | MEDLINE | ID: mdl-36210857

Traditional Chinese medicine (TCM) has attracted a great deal of attention in the treatment of cerebral ischemia is credited with the remarkable neuroprotective effects. However, the imperfect functional mechanism of TCM is a major obstacle to their application. Many studies have been conducted to illustrate the pathophysiology of post-ischemic cerebral ischemia by elucidating the neuronal cell death pathway. Meanwhile, a new type of cell death, ferroptosis, is gradually being recognized in various diseases and is becoming a new pathway of therapeutic intervention strategy to solve many health problems. Especially since ferroptosis has been found to be closely involved into the pathogenesis of cerebral ischemia, it has been considered as a key target in the treatment of cerebral ischemia. Therefore, this paper reviews the latest research findings about the treatment of cerebral ischemia with TCM focused on ferroptosis as a target. Also, in order to explores the possibility of a new approach to treat cerebral ischemia with TCM, we discusses the correlation between ferroptosis and other cell death pathways such as apoptosis and autophagy, which would provide references for the following researches.

13.
FASEB J ; 36(4): e22263, 2022 04.
Article En | MEDLINE | ID: mdl-35303316

Neuronal apoptosis is one of the main pathological processes of hypoxic-ischemic brain damage (HIBD) and is involved in the development of hypoxic-ischemic encephalopathy (HIE) in neonates. Atorvastatin has been found to have neuroprotective effects in some nervous system diseases, but its role in regulating the pathogenesis of neonatal HIBD remains elusive. Thus, this study aimed to explore the effects and related mechanisms of atorvastatin on the regulation of neuronal apoptosis after HIBD in newborn rats. The rat HIBD model and the neuronal oxygen glucose deprivation (OGD) model were established routinely. Atorvastatin, cAMP inhibitor (SQ22536), and BDNF inhibitor (ANA-12) were used to treat HIBD rats and OGD neurons. Cerebral infarction, learning and memory ability, cAMP/PKA/p-CREB/BDNF signaling molecules, and apoptosis-related indicators (TUNEL, cleaved caspase-3, and Bax/Bcl2) were then examined. In vivo, atorvastatin reduced cerebral infarction, improved learning and memory ability, decreased the number of TUNEL-positive neurons, inhibited the expression of cleaved caspase-3 and Bax/Bcl2, and activated the cAMP/PKA/p-CREB/BDNF pathway in the cerebral cortex after HIBD. In vitro, atorvastatin also decreased the apoptosis-related indicators and activated the cAMP/PKA/p-CREB/BDNF pathway in neurons after OGD. Furthermore, inhibition of cAMP or BDNF attenuated the effect of atorvastatin on the reduction of neuronal apoptosis, suggesting that atorvastatin inhibits HIBD-induced neuronal apoptosis and alleviates brain injury in neonatal rats mainly by activating the cAMP/PKA/p-CREB/BDNF pathway. In conclusion, atorvastatin may be developed as a potential drug for the treatment of neonatal HIE.


Brain-Derived Neurotrophic Factor , Hypoxia-Ischemia, Brain , Animals , Animals, Newborn , Apoptosis , Atorvastatin/pharmacology , Atorvastatin/therapeutic use , Caspase 3 , Cerebral Infarction/drug therapy , Hypoxia , Hypoxia-Ischemia, Brain/drug therapy , Hypoxia-Ischemia, Brain/metabolism , Proto-Oncogene Proteins c-bcl-2 , Rats , Rats, Sprague-Dawley , bcl-2-Associated X Protein
15.
J Neuropathol Exp Neurol ; 81(4): 260-270, 2022 03 29.
Article En | MEDLINE | ID: mdl-35238915

miR-466b-5p is aberrantly upregulated in oligodendrocyte precursor cells (OPCs) after white matter injury (WMI). However, its roles in neonatal WMI pathogenesis are unknown. In this study, P3 rats were subjected to hypoxia-ischemia to establish a neonatal WMI model. A bioinformatic analysis was conducted to predict the possible target of miR-466b-5p as Lpar1. RT-PCR was performed to validate the expression of miR-466b-5p and Lpar1 mRNA. The miR-466b-5p antagomir was intracerebroventricularly administrated to inhibit miR-466b-5p; OPC differentiation, apoptosis, proliferation, and myelination were analyzed using immunofluorescence staining, western blotting, and electron microscopy. In addition, the behavioral performance of the rats was measured with the Morris water maze test. Sox10 expression and PLP trafficking were examined to elucidate the mechanism by which miR-466b-5p regulates WMI pathogenesis. We found that after inhibiting miR-466b-5p, the Edg2 protein was increased, OPC differentiation and myelinated axon formation were enhanced, and the rats' behavioral performance was improved, whereas OPC proliferation and apoptosis were not affected. Furthermore, the expression of Sox10 was promoted while PLP trafficking was attenuated after miR-466b-5p inhibition. We conclude that miR-466b-5p is involved in the regulation of WMI pathogenesis, partly through the Lpar1/Edg2/Sox10 and Lpar1/Edg2/PLP signaling pathways.


Brain Injuries , MicroRNAs , Oligodendrocyte Precursor Cells , Receptors, Lysophosphatidic Acid , White Matter , Animals , Apoptosis , Brain Injuries/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Oligodendrocyte Precursor Cells/metabolism , Rats , Receptors, Lysophosphatidic Acid/metabolism , White Matter/metabolism
16.
Ecotoxicology ; 30(10): 1997-2010, 2021 Dec.
Article En | MEDLINE | ID: mdl-34529203

Microplastics (MPs) are common environmental contaminants that present a growing health concern due to their increasing presence in aquatic and human systems. However, the mechanisms behind MP effects on organisms are unclear. In this study, zebrafish (Danio rerio) were used as an in vivo model to investigate the potential risks and molecular mechanisms of the toxic effects of polyethylene MPs (45-53 µm). In the zebrafish intestine, 6, 5, and 186 genes showed differential expression after MP treatment for 1, 5, and 10 days, respectively. In the gills, 318, 92, and 484 genes showed differential expression after MP treatment for 1, 5, and 10 days, respectively. In both the intestine and the gills, Gene Ontology (GO) annotation showed that the main enriched terms were biological regulation, cellular process, metabolic process, cellular anatomical entity, and binding. KEGG enrichment analysis on DEGs revealed that the dominant pathways were carbohydrate metabolism and lipid metabolism, which were strongly influenced by MPs in the intestine. The dominant pathways in the gills were immune and lipid metabolism. The respiratory rate of gills, the activity of SOD and GSH in the intestine significantly increased after exposure to MPs compared with the control (p < 0.05), while the activity of SOD did not change in the gills. GSH activity was only significantly increased after MP exposure for 5 days. Also, the MDA content was not changed in the intestine but was significantly decreased in the gills after MP exposure. The activity of AChE significantly decreased only after MPs exposure for 5 days. Overall, these results indicated that MPs pollution significantly induced oxidative stress and neurotoxicity, increased respiratory rate, disturbed energy metabolism and stimulated immune function in fish, displaying an environmental risk of MPs to aquatic ecosystems.


Microplastics , Water Pollutants, Chemical , Animals , Ecosystem , Gills , Intestines/chemistry , Plastics/toxicity , Polyethylene/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Zebrafish
17.
Rev Neurosci ; 32(6): 615-629, 2021 08 26.
Article En | MEDLINE | ID: mdl-33583156

Exercise has been shown to have beneficial effects on brain functions in humans and animals. Exercise can improve memory and learning in age-related neurodegenerative diseases. In animal models, physical exercise regulates epigenetics, promotes synaptic plasticity and hippocampal neurogenesis, regulates the expression levels of neurotrophic factors, and improves cognitive function. Therefore, exercise is very important for brain rehabilitation and remodeling. The purpose of this review is to explore the mechanisms by which exercise exerts positive effects on brain function. This knowledge implies that physical exercise can be used as a non-drug therapy for neurological diseases.


Nerve Growth Factors , Neurodegenerative Diseases , Animals , Brain/metabolism , Epigenesis, Genetic , Exercise , Humans , Nerve Growth Factors/metabolism , Neuronal Plasticity
18.
Front Cell Neurosci ; 14: 211, 2020.
Article En | MEDLINE | ID: mdl-32754016

Ischemic brain injuries are common diseases with high morbidity, disability, and mortality rates, which have significant impacts on human health and life. Microglia are resident cells of the central nervous system (CNS). The inflammatory responses mediated by microglia play an important role in the occurrence and development of ischemic brain injuries. This article summarizes the activation, polarization, depletion, and repopulation of microglia after ischemic brain injuries, proposing new treatment strategies for such injuries through the modulation of microglial function.

19.
Medicine (Baltimore) ; 99(26): e20716, 2020 Jun 26.
Article En | MEDLINE | ID: mdl-32590746

Genome-wide association studies (GWAS) have identified multiple independent cancer susceptibility loci at chromosome 8q24. We aimed to evaluate the associations between variants in the 8q24 region and cancer susceptibility. A comprehensive research synopsis and meta-analysis was performed to evaluate associations between 28 variants in 8q24 and risk of 7 cancers using data from 103 eligible articles totaling 146,932 cancer cases and 219,724 controls. Results: 20 variants were significantly associated with risk of prostate cancer, colorectal cancer, thyroid cancer, breast cancer, bladder cancer, stomach cancer, and glioma, including 1 variant associated with prostate cancer, colorectal cancer, and thyroid cancer. Cumulative epidemiological evidence of an association was graded as strong for DG8S737 -8 allele, rs10090154, rs7000448 in prostate cancer, rs10808556 in colorectal cancer, rs55705857 in gliomas, rs9642880 in bladder cancer, moderate for rs16901979, rs1447295, rs6983267, rs7017300, rs7837688, rs1016343, rs620861, rs10086908 associated in prostate cancer, rs10505477, rs6983267 in colorectal cancer, rs6983267 in thyroid cancer, rs13281615 in breast cancer, and rs1447295 in stomach cancer, weak for rs6983561, rs13254738, rs7008482, rs4242384 in prostate cancer. Data from ENCODE suggested that these variants with strong evidence and other correlated variants might fall within putative functional regions. Our study provides summary evidence that common variants in the 8q24 are associated with risk of multiple cancers in this large-scale research synopsis and meta-analysis. Further studies are needed to explore the mechanisms underlying variants in the 8q24 involved in various human cancers.


Genetic Predisposition to Disease/epidemiology , Genetic Variation/genetics , Neoplasms/genetics , Genome-Wide Association Study , Humans , Neoplasms/classification , Neoplasms/epidemiology
20.
Zhongguo Dang Dai Er Ke Za Zhi ; 22(5): 512-518, 2020 May.
Article Zh | MEDLINE | ID: mdl-32434650

OBJECTIVE: To study the expression and effect of Pim1 in primary cortical neurons after hypoxic-ischemic injury. METHODS: Cortical neurons were isolated from 1-day-old C57BL/6 mice and cultured in neurobasal medium. On the 8th day of neuron culture, cells were subjected to oxygen-glucose deprivation/reoxygen (OGD/R) treatment to mimic in vivo hypoxic injury of neurons. Briefly, medium were changed to DMEM medium, and cells were cultured in 1% O2 for 3 hours and then changed back to normal medium and conditions. Cells were collected at 0 hour, 6 hours, 12 hours and 24 hours after OGD/R. Primary neurons were transfected with Pim1 overexpression plasmid or mock plasmid, and then were exposed to normal conditions or OGD/R treatment. They were named as Pim1 group, control group, OGD/R group and OGD/R+Pim1 group respectively. Real-time PCR was used to detect Pim1 mRNA expression. Western blot was used to detect the protein expression of Pim1 and apoptotic related protein cleaved caspase 3 (CC3). TUNEL staining was used to detect cell apoptosis. RESULTS: Real-time PCR and Western blot results showed that Pim1 mRNA and protein were significantly decreased in neurons after OGD/R. They began to decrease at 0 hour after OGD/R, reached to the lowest at 12 hours after OGD/R, and remained at a lower level at 24 hours after OGD/R (P<0.01). Overexpression of Pim1 significantly upregulated the protein level of Pim1. Under OGD/R conditions, the CC3 expression and the apoptosis rate in cells of the Pim1 group were significantly lower than in un-transfected cells (P<0.01). CONCLUSIONS: Hypoxic-ischemic injury may decrease Pim1 expression in neurons. Overexpressed Pim1 may inhibit apoptosis induced by OGD/R.


Neurons , Animals , Glucose , Mice , Mice, Inbred C57BL , Oxygen , Proto-Oncogene Proteins c-pim-1 , Rats, Sprague-Dawley
...